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Abstract— In this paper we present an open robotic platform
which is targeted to perform the task of a tennis ball boy.
Our platform can localize itself and navigate on a tennis
court. It can also localize tennis balls lying on the court. It
is self-contained with on-board sensing and computation, uses
only cost-effective off-the-shelf components, and was designed
with an eye for robustness and repeatability in real-world
environments. This paper describes our system, presents our
first set of experimental results, and discusses some of the
challenges faced.

I. INTRODUCTION
Despite the success of the Roomba robotic vacuum, similar

robotics platforms have been slow to follow. Roomba’s suc-
cess lay in its promise of accomplishing a simple repetitive
task (vacuum cleaning) autonomously and at a competitive
price [1].

We present a low-cost robot platform which, like the
Roomba, is designed to perform a specific task (picking up
balls during a tennis match) autonomously and reliably. A
tennis “ball boy” robot must be aware of the environment
around it. It needs to stay off the court during a match until
it recognizes a dead ball, fetch the ball, and re-park itself
at the edge of the court. It ought to do so with speed and
precision.

In this paper, we present our first steps toward this goal
and analyze some of the challenges involved. First we con-
structed a versatile mobile robot platform with a ball pickup
attachment, and implemented a ROS software stack for base
control and odometry. We then extended the capabilities of
the software stack with a motion planner, a court localization
module, and a stationary ball detector (as depicted in Fig. 1).
Each component of the software stack is presented in detail,
along with an analysis of experimental results.

The contributions of this paper are two-fold: (i) It provides
an in-depth case study of the development of a robotic plat-
form to be deployed by consumers. This study highlights use
of state-of-the-art techniques in localization, navigation and
control. (ii) It presents a low-cost, open-design, open-source
robotic platform that we hope will enable other roboticists
to build upon and has the potential to serve educational
purposes. All our code is integrated with ROS [2], an open
source codebase widely used in robotics.

A video illustrating our platform and its capabilities is
available at http://rll.berkeley.edu/icra2012/ballbot.

II. PLATFORM
For this task, we built a mobile robot platform with on-

board processing, computer vision, and wireless commu-
nication. We envision that the platform may be used to

Fig. 1. System block diagram

Fig. 2. The ballbot prototype with ball pickup attachment, side view

carry different payloads to accomplish different tasks. As
the platform matures over the next couple of months, we
will share the platform design so that the wider robotics
community can benefit.

A. Mechanical

1) Base platform: The physical platform is built on top
of a 1:10 scale RC car chassis, giving it good stability and
handling at high speed. With a stiffened suspension, it can
carry its weight (1.5 kg) in an additional end-effector and
sensor payload.

2) Ball pickup: The ball pickup mechanism shown in
Fig. 2 was designed to collect tennis balls from the ground,
store the balls and deliver them back to the players. It uses
two rollers which are independently driven through toothed
belts by two DC motors. The rollers are placed horizontally
parallel to the ground and are wide enough to tolerate an
imprecise approach to the ball. The roll-out / roll-in can be
achieved by reversing the direction of rotation of one of the
rollers. This simple mechanism was found to work fairly
reliably with only a 4% error rate.

http://rll.berkeley.edu/icra2012/ballbot


Fig. 3. Ideal initial placement zones for the robot

B. Control System

The main computing platform is the open-source Pand-
aBoard1, a dual-core 1GHz ARM Cortex-A9 computer which
is roughly equivalent to a netbook in terms of computing
power. The PandaBoard runs Ubuntu Linux, allowing the use
of existing software frameworks like ROS and OpenCV, and
regular webcams for vision. In general this platform allows
for great flexibility in software and hardware choices.

Low-level motor and sensor interfacing is performed by
an Arduino which communicates with the Pandaboard. Our
sensor suite features an optical encoder and a 9DOF IMU.
The Arduino is easily reprogrammable via USB and provides
flexibility in interfacing different attachments or sensors.

C. Electrical

The entire platform is powered by a standard 7.2V NiMH
battery pack. The robot is very power-efficient: a fully-
charged battery can power the on-board computer and the
motors for 3-4 hours during typical testing.

III. LOCALIZATION

There are three chief challenges to court line-based lo-
calization: lines are not unique, are relatively sparse, and
convey less information than a point landmark. Some work
has been done using court lines to supplement uniquely
identified landmarks on the RoboCup field [3], and using
constraint-based landmarks of varying types [4]. However,
there are no unique landmarks on a tennis court, and lines
on a court are not all visible to the robot at once, leading to
ambiguity. Furthermore, tennis courts are highly symmetric,
so a series of measurements while on the move are necessary
to establish the robot position.

Because the inherent symmetry requires multiple hypothe-
ses, we took a Monte Carlo Localization (MCL) [5] approach
to localization using court lines as observed landmarks. To
conserve computational resources on the embedded system,
we constrain the problem further. First, we assume that the

1More info available at pandaboard.org

Fig. 4. View from the robot-mounted camera with detected lines labeled.
Note the limited view at this height.

for p in particles:
Generate the backprojection for court lines
within 5m of particle
w1, w2 = 1.0, 1.0
for each detected line:
w1 *= 1 + weight of most likely model line

for each model line:
w2 *= weight of most likely detected line

p.weight *= w1 + w2

Fig. 5. Pseudocode for the MCL observation update

robot is initially placed by the sideline facing the service
line, where it can see a corner (Fig. 3). This allows it to
get a global initialization much more quickly. Second, to
improve our accuracy, we constrain the robot’s path to stay
near court lines, similar to the coastal navigation presented
in [6].

A. Line Detector

The line detector thresholds the image in grayscale to find
the light-colored regions, then uses a probabilistic Hough
transform [7], [8] to detect lines, as shown in Fig. 4.
The Hough transform lines are then processed to remove
duplicates using grouping by distance and similarity of angle.
This line detector detects lines reliably within about 3 meters,
but it also generates many false positives. The particle filter
is able to handle these false positives.

B. Particle Filter

The MCL particle filter uses the detected lines as observa-
tions. Using the known tennis court model and the particle
pose, it generates the backprojection of each court line onto
the camera frame. Then, using a distance metric which takes
into account both distance and orientation, the filter re-
weights the particles based on the observation according to
the algorithm outlined in Fig. 5.

The observation update models the line detector’s false
positives by rewarding a matching line (small distance met-
ric) but not penalizing for extra lines (large distance metric).
However, expected lines which are not detected are penalized

http://pandaboard.org


Fig. 6. Odometry vs. MCL estimated pose

slightly. This allows the lack of a line to inform the filter.
The filter must be tuned not to penalize missing lines too
much; otherwise particles that expect to see no lines, such
as particles facing away from the court, may gain too much
weight.

C. Experimental Results

Experiments were conducted on an outdoor tennis court
in (1) midday, (2) sunset, and (3) overcast lighting condi-
tions. The robot was steered by radio control. Odometry
measurements and camera images were recorded for offline
computation.

Initial results show that odometry alone looks qualitatively
good but exhibits some drift. When court lines are in view,
the particle filter corrects for drift. This correction can be
seen in the yellow track in Fig. 6.

1) Backprojection model and noise rejection: Comparing
detected lines and model lines in the image plane (using the
backprojection model) was found to be much more robust
to mechanical noise than comparing the lines in the world
coordinate plane. This is because in the image plane, any
mechanical vibrations which pitch the camera up and down
will affect near and far lines equally.

2) Global vs. local localization: The particle filter can
successfully perform a global localization from an arbitrary
starting location. However, to perform the initial global
localization, it was necessary to have about 5000 particles
evenly spaced around the field. By relaxing this constraint
and specifying that the ball must start in one of two starting
locations, only about 200 particles are necessary to get an
initial fix.

3) Running time: For 200 particles, each observation
takes about 80ms on average using on-board processing.
Therefore we are currently processing at about 12.5 frames
per second. While this is sufficient, further code optimization
should yield some performance gains.

IV. MOTION PLANNING AND CONTROL

The on-board motion planning and control framework
is responsible for generating optimal and feasible paths in
different scenarios, and for generating controls that move the
robot from start to goal accurately. In essence, the planner
is responsible for driving the car to a ball, retrieving the ball
and delivering it to another location. The optimality of a plan
is judged by its length, ease of control and time to compute
given our limited computational resources and the need for
quick response times during a tennis match.

A. Path Planner

The tennis court is a fairly simple environment from a
planning point of view: it has fixed dimensions, is bounded
on all four sides and has one consistent fixed obstacle—
the net. A robot needs to account for other static obstacles
such as benches and dynamic obstacles such as players. The
planner is bound to respect both environmental constraints
(obstacles) and differential constraints (e.g. a minimum turn-
ing radius of 0.7m for our robot).

The configuration of the robot is fully determined by a
three dimensional vector (x, y, θ). Search based planning
over a discretized configuration space is known to work
well in such relatively low dimensional state spaces. In
particular, lattice based planning [9], [10] is an approach
that discretizes the configuration space into a set of states
and connections that represent feasible paths between states.
These connections can then be repeated to reach any con-
figuration on the lattice. Lattice based planning effectively
converts motion planning into a graph based search problem.
It is well suited for our platform because it directly encodes
differential constraints into the plan without the need for post
processing. Moreover, it is easy to implement and compare
various search algorithms without making large changes to
the overall architecture of the planner.

Our planner is largely based on the framework provided
by Pivtoraiko et al. [11], with a number of optimizations
and simplifications to improve on-board performance. The
different components of the planner will be explained below
in accordance with the aforementioned structure.

1) Lattice state space and control set: The state lattice
discretizes the tennis court into regular intervals of 0.175m,
which is approximately 40% of the robot’s length. For
robot heading, we chose a minimal set of 8 uniformly
spaced headings with an average out degree of 8. This was
done in order to limit the branching factor and therefore
reduce running time of the search. Motion primitives can
be computed once from the origin and stored. The set of
allowed motions from any lattice point can then be found
by translating the stored motion primitives from the origin
to that point.

2) Computing edge costs: Edge costs are typically com-
puted by convolving the swath of the car with the cost map
below [11]. We made two improvements that work well for
our situation: (i) Convolving the swath with map cells for
every edge in the graph search is expensive, but the sparsity
of obstacles in our map allows us to heavily optimize by



not convolving unless the edge is in close proximity to an
obstacle. We obtained speed-ups of up to 50x in some cases,
especially for paths around the net. (ii) We further penalize
turns to generate straighter and more easily controllable
paths.

3) Search algorithm: A* search [12] is a popular heuristic
based search algorithm, which serves as our starting point.
Our discretized search space, with low branching factor for
each state, resulted in low run-times for A*. However, two
issues require us to implement a better search algorithm with
faster replanning: (i) The goal position may change during
execution, either because the ball is moving or because the
ball detector reports an updated location (ii) The robot might
detect new obstacles that are not part of the map, like a player
stepping in front of it.

In both cases, A* search in its original form will replan
without using any information from previously generated
paths. However, better search algorithms exist.

We use a version of Moving-Target (MT) search called
Lazy MT-Adaptive A*, first introduced by Koenig et al [13]
for the problem of quick path planning for characters in video
games. Our results show that the algorithm works well for
our situation as well, where both the agent (robot) and the
goal (ball) can move.

MT-Adaptive A* is similar to A*, but is modified to
incorporate two key ideas:

(i) Heuristic update after path computation:
For any state s that was expanded during an A* search,

let g(s) denote its g-value, i.e. the distance from the start
state to state s. Let g(starget) denote the g-value of the goal
state starget. Adaptive A* updates the h-values of all states
s that were expanded during the search as follows:

h(s) := g(starget)− g(s). (1)

The new h-values are consistent and for any state, they
cannot be smaller than the user-generated h-value for that
state. Hence any new A* search using the new h-values will
typically expand fewer states than the earlier searches.

(ii) Heuristic correction for Moving Target:
MT-Adaptive A* also corrects heuristics of nodes to main-

tain consistency when the goal changes. Given consistent
h-values with respect to the previous goal state starget, MT-
Adaptive A* corrects the h-values of all states s to make
them consistent with respect to the new goal state s′target. It
does this by assigning

h(s) := max(H(s, starget), h(s)h(starget)) (2)

for all s. It can be proved that the new h-values h′(s) are
consistent with respect to the new goal state s′target [13]

MT-Adaptive A* with the new h-values cannot expand
more states than an otherwise identical A* search with
user-supplied initial h-values. In practice however, it usually
expands much fewer nodes. The lazy version that we use
does further optimizations to compute new h-values only
for nodes that are needed during a future search. The entire
algorithm is presented in detail in [13].

B. Controller

The robot has a closed loop controller that enables it to
use localization information to follow planned paths accu-
rately. The controller has two components—speed control
and steering control.

1) Speed control: The controller commands speeds to the
Arduino, which then runs PID control based on a wheel
encoder to maintain the commanded speed. The controller
uses a 0.25m lookahead to determine safe running speeds.
This allows it to slow down before turns, when near obstacles
and before reverse segments in the path.

2) Steering control: 1. Our steering controller is based
on the one used by Stanley, Stanford’s robot that won the
DARPA Grand Challenge [14].

Fig. 7. a. Illustration of the Stanley steering controller [14] b. Stanley
steering controller corrects trajectory from an inital cross-track error of
0.4m, k = 2 (Court markings are in cm)

The controller is based on a nonlinear feedback function of
the cross-track error x(t) which measures the lateral distance
of the center of the robot’s front wheels from the nearest
point on the trajectory (Fig. 7). In the error-free case, using
this term, the front wheels match the global orientation of
the trajectory. The angle θ describes the orientation of the
nearest path segment, measured relative to the vehicles own
orientation. In the absence of any lateral errors, the controller
points the front wheels parallel to the planner trajectory. u(t)
is the robot’s speed at time t. The basic steering angle control
law is given by

δ(t) = ψ(t) + arctan(
kx(t)

u(t)
), (3)

where k is a gain parameter that can be tuned.
Using a linear bicycle model with infinite tire stiffness

and tight steering limitations, it can be shown that for small
cross track error, this control law results in error converging
exponentially to zero [14].

C. Experiments

Fig. 8 shows various situations where the planner gener-
ates a plan and the controller drives the bot along the plan.
All computation is done on board. These trajectories were
recorded using the Vicon MX motion capture system, and
superimposed onto a map of the tennis court. Table I displays
quantitative measures of performance for both the planner
and the controller, averaged over 10 runs per example. For
the planner, the number of nodes expanded and runtimes
provide a measure of performance, while the controller
is measured by average cross-track error, final cross-track
error and heading error at goal. Along with these average



Fig. 8. Examples of plans generated (blue) and trajectories taken by car (red) for three cases — a) Picking up a ball b) Delivering a ball at a specific
pose c) Retrieving a ball across the net. The court markings are all in meters

TABLE I
ON BOARD TESTS OF PLANNING AND CONTROL

Plan (from Fig. 8) Nodes expanded Run-time(s) Average cross-track error(m) Cross-track error at goal(m) Heading error at goal(rad)
a) 104 0.48 (0.04) 0.05 (0.007) 0.067 (0.033) 0.1 (0.04)
b) 179 0.99 (0.47) 0.21 (0.025) 0.116 (0.0146) 0.13 (0.02)
c) 608 4.4 (0.42) 0.107 (0.007) 0.15 (0.017) 0.13 (0.09)

quantities, we also report the standard deviation as a measure
of statistical significance of our results. We can see that
although there is room for improvement with the planner’s
speed, it does a satisfactory job of generating initial plans.
The controller performs very well. As an additional measure
of the controller’s performance, we can report a 93% success
rate for the robot arriving at the goal such that the ball is
encased within its roller.

V. BALL DETECTION

A. Approach

We developed a novel approach for locating stationary
balls on the surface of a tennis court. In order to cut out
impossible regions where stationary balls could be found
and reduce the search domain, only the region below a finite
horizon extending over the court length is considered. The
approach assumes that at most one ball is present in the
frame. It further assumes that fine texture details in the
image are redundant. The textures and noise are smoothed
by running mean shift like clustering over space [15]. The
resulting posterized image has larger areas with nearly
constant colors. Connected components or blobs, which are
contiguous regions of nearly constant color are generated
from the posterized image using a flood fill algorithm.
Connected components which have pixel area much greater
than what is possible for an image of a taken ball from the
camera’s height are discarded.

Contours bounding the connected components are
found [16]. Contours help in obtaining useful geometric
properties like area, shape and position of the blobs. Contours
are filtered on size and shape. This filtering based shape
is done by first fitting ellipses to the blobs using a least
squares technique [17] and then evauating the following two
measures,

Fig. 9. Intermediate steps of ball detection. [from top] a. Connected
components after mean-shift clustering and flood-filling b. Blobs left after
filtering on shape, size and color. c. Detected ball and estimated position
(meters, degrees)

ρ := M/m (4)

where M = length of major axis,m = length of minor axis,

∆ := 1− Area(Blob)

Area(Ellipse)
(5)

For a circular blob, it is expected that ρ → 1+ and



∆→ 0+.

The remaining contours’ pixels are then converted to HSV
colorspace for color-based filtering aided by the tennis ball’s
distinct color. In the rare case that multiple blobs remain,
the one with the largest area is assumed to represent the ball
(see Fig. 9). Successive averaging and filtering leads to a
progressively diminishing set of ball candidates which aids
in reducing the computation overhead, a precious resource
for embedded systems.

B. Experiments

This approach was found to detect balls much farther away
(5-6 meters) than naive color thresholding which was only
useful for balls within close range (1-2 meters). It was more
robust to potential detractors like distant trees, round objects
like stones or even varying lighting conditions. It was found
to have a pleasingly low false negative rate but a relatively
higher false positive rate, which was primarily due to random
misdetection and can be improved by imposing constraints
on position of the ball based on the motion feedback of the
robot.

VI. CONCLUSIONS AND FUTURE WORK

Our efforts to develop a low-cost integrated system for
tennis ball retrieval have thus far resulted in the individual
capabilities of localization, navigation and control, and ball
detection. We are currently working on the integration of
these components. In the further future it will require the
ability to sufficiently understand the status of the game to
know when to retrieve a ball and where to deliver it.

We have come a long way in fulfilling a secondary goal,
which is to develop a versatile low-cost research platform
that can handle a high top speed and accommodate different
end-effectors or sensor payloads. We believe this open plat-
form will benefit other researchers and robotics hobbyists.
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