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Abstract— Deformable object manipulation remains a chal-
lenging task in robotics. Continuous, high dimensional, state
and action spaces make standard model-based approaches to
manipulation planning intractable. Recent work has shown
progress on this task by learning from demonstrations through
trajectory transfer [21], [20]. This approach avoids planning in
the state space of a deformable object by finding a spatial
warping that can be used to apply an expert demonstration to
a new scene.

We propose a method for improving trajectory transfer that
makes use of bootstrapping examples through simulation. Given
a simulator and a way to detect success, we augment our tra-
jectory library with example states and transferred trajectories
that have succeeded in simulation. We apply this approach to
a simulated overhand knot-tying task. The approach described
in Schulman et al. [21] achieves a success rate of 59%. We
demonstrate performance of up to 85%.

I. INTRODUCTION

A large challenge in applying standard manipulation and
planning techniques to deformable object manipulation is
that of tractable modeling. Deformable object are often
characterized by high-dimensional, continuous state-action
spaces. Model-based planning has yet to scale up to the task
of efficient planning in this setting.

Recent work have gained traction on this problem through
the technique of learning from demonstrations [21], [20].
These results are achieved through trajectory transfer, where
a demonstration trajectory is generalized to fit to a new
scenario. Trajectory transfer finds a non-rigid registration be-
tween an example scene and the current scene that trades off
between goodness-of-fit and the curvature of the registration.
This method of transfer is model-free and obviates the need
to plan in complicated and intractable models of deformable
objects. Trajectory transfer has demonstrated state-of-the-art
performance for knot-tying and suturing.

An important aspect of these strategies is incorporation
of multiple demonstrations. By increasing the number of
demonstrations, it becomes possible to do more tasks. Addi-
tionally, demonstrations can take the form of steps in a task
and can be ordered and combined to further increase the set
of possible successful manipulations.

However, a key problem remains: how should we pick a
trajectory to transfer from a library of example trajectories
given an input scene? Incorrect selection may lead us to
fail at a task which would otherwise be possible for the
correct selection of trajectories. Furthermore, how can we
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Fig. 1. Diagram of the bootstrapping approach we employ. Our system
uses simulation of perturbed states from our demonstration set to augment
a library of expert demonstrations. We find that this approach can leverage
synthetic data to improve on the applicable of expert demonstrations by
better modelling of states that trajectories can transfer to and allowing our
approach to penalize less for transformations where transfer succeeds.

use experience to improve trajectory transfer both at the
level of selecting a trajectory to transfer and at the level
of transferring a single trajectory.

In this paper we present a method for improving the
performance associated with a library of demonstrated trajec-
tories through simulated attempts at trajectory transfer and
feedback about the success of those transferred trajectory.
Our approach applies bootstrapping to improve on standard
trajectory transfer by by treating successful transfers as
new demonstrations. This enables us improve performance
without requiring new human supervision. Treating success-
ful simulations as new demonstrations builds up a higher
granularity representation of states where we expect transfer
to succeed and enables better selection of a trajectory to
generalize at test time. In addition, the feedback recieved can
improve our ability to transfer a single trajectory by build-
ing an implicit model of non-rigid deformations such that
transfer succeeds. We demonstrate the effectiveness of these
improvements in knot-tying task and find improvements of
up to 25% over the transfer method described in Schulman
et al. [21].



II. RELATED WORK

Our approach to learning from demonstrations avoids
building explicit representations and models of objects and
states spaces. Thus, it is well suited to deformable object
manipulations. It is challenging to manipulate deformable
objects due to their nonlinearity and because the configura-
tion spaces of such objects may be infinite-dimensional [9].

In previous work, Wada et al. model textile fabric and
sponge blocks coarsely and then apply a control method that
is robust to discrepancies between the coarse model and the
object [23]. Howard et al. present a more general approach
for grasping 3D deformable objects that does not assume
prior knowledge of the object. They model particle motion
of the object using nonlinear partial differential equations,
and train a neural network for determining the minimum
force required for manipulating the object [7].

We validate our approach and present results for knot
tying. There is a rich literature of knot-specific approaches to
this problem. For instance, in knot planning from observation
(KPO), knot theory is used to recognize rope configurations
and define movement primitives from visual observations
of humans tying knots [13], [22]. Existing motion planning
approaches for knot tying use topological representations of
rope states (i.e. sequences of rope crossings and their proper-
ties) and define a model for transitioning between topological
states [12], [18], [25]. Robust open loop execution of knot
tying has also been explored [2]

The problem of learning from demonstrations (LfD) deals
with the generalization of expert demonstrations to new
scenarios [1], [19]. Behavioral cloning is an approach to LfD
that directly learns a policy to mimic an expert’s behavior.

One of the first successful applications of this strategy is
the ALVINN system [15], which utilizes a neural network
to learn a steering policy that enables an autonomous car
to follow a road. [14] use a convolutional network to learn
a steering policy for off-road driving. [16] uses multi-class
classification to learn a function that scores actions to predict
good foot steps for robot locomotion and good grasps for
robot manipulation. [17] propose a method to directly control
a Micro UAV from RGB camera input.

Miyamoto et al. describe an approach for learning to play
Kendama [11] and hit a tennis ball [10] from demonstrated
actions. Their method is successful at generalizing human
trajectories and incorporates sequential information from
multiple demonstrations. However, this approach requires
hand tuning of waypoints and does not generalize to new
scenes.

Isaac et al. [8] use behavioral cloning to learn to fly an
airplane, by making use of an abstract, goal-directed, layer
which sits on top of a low-level PID controller. This goal-
directed learning is similar in spirit to ours, although it makes
use of a different formalism and uses simpler low level
controllers.

Calinon et al. learn a mixture of Gaussians to represent
the joint trajectory of the robot and environment state across
multiple demonstrations, and infer the trajectory for a new

environment state by conditioning on that state [4], [3]. Their
approach assumes access to a feature representation of the
environment, so it cannot directly be applied to tasks in
environments without fixed feature representations — such
as our application of knot tying.

III. TRAJECTORY TRANSFER WITH THIN PLATE SPLINES

Trajectory transfer is an approach to learning from expert
demonstrations [21]. The trajectory transfer algorithm is
given a current scene, stest, demonstration scene, sdemo and
a demonstration trajectory, tdemo, as input. We assume that
the scenes are made up of matched points in R3. The first
step is to find a function, f∗ : R3 → R3, as the solution to
the following optimization problem:

min
f

∑
i

||s(i)test − f(s
(i)
demo)||

2 + C

∫
dx||D2(f)||2Frob. (1)

The minimizing f will be a Thin Plate Spline, and can be
expressed as a linear combination of basis functions about
the correspondence points [24]. C is a hyper-parameter that
trades off between goodness of fit and the curvature of the
function. The solution to this optimization can be computed
as the solution to a linear system of equations.

Given a warping, f∗, between the demo and test scenes,
we take each pose from the demo trajectory and pass it
through f∗. Poses are transferred by mapping coordinate
frames through the jacobian of f∗. The trajectory that results
from this is used to guide a motion planner that finds a
similar feasible trajectory. This trajectory is executed in the
test scene. In the case where correspondences are not known
initially, one can use TPS-RPM, an approach that jointly
finds correspondences and a mapping between them by
alternating between estimating correspondences and solving
for a thin plate spline[5].

Schulman et al. [21] provide some intuition for scenarios
where this approach is likely to succeed. They assume a
cost function, L, on states and trajectories, a reasonable
option might be 0-1 loss, depending on whether the trajectory
successfully executes a desired manipulation in a given state.
Then we can justify warping the state s and the trajectory
t in the case where L(s, t) = L(f(s), f(t)). Essentially,
manipulation is preserved under a class of transformations,
thus, we can successfully transform a state and trajectory and
maintain the relation that the manipulation succeeds. The set
of functions that have this property define a set of states that
a particular demonstration trajectory can transfer to.

A final aspect of this approach is incorporation of multiple
trajectories. Given a library of trajectories, one can increase
the number of states that can be generalized to. This allows
an expert to demonstrate steps of a complex task which
can be sequenced at test time. This can make trajectory
transfer more robust and reliable, as an expert can also
include demonstrations to recover from common failures.
Current approaches use the nearest-neighbor with respect
to registration cost (the value of the optimization problem
defined in (1)). This corresponds to modeling the set of states
a demonstration can generalize to—that is states for which



L is invariant to the TPS warping found by TPS-RPM—
as a hyper-sphere in a high-dimensional space where this
registration cost is a distance function.

IV. BOOTSTRAPPING NEW DEMONSTRATIONS FROM
EXPERIENCE

In this section, we present our algorithm for bootstrapping
new examples from expert demonstrations. At its core, the
idea is simple: if we get examples of new states that are able
to successfully transfer a trajectory to, we get a new example
of a successful manipulation. We can use these examples to
transfer trajectories better in new settings.

Formally, we assume access to an environment and a
reward signal. In our work, this environment is simulated
although the approach can apply to real settings. Our reward
signal is a 1-0 response which tells us if a manipulation
succeeds. For tasks involving several steps, we associate
success with a manipulation if a success signal is received
before a fixed time horizon is reached.

To ease discussion, we will use the concept of a transfer
set. Given a method for transfering a demonstration trajectory
to a new state, the associated transfer set is the set of states
such that the transferred trajectory will successfully execute
a demonstrated manipulation. The assumption behind the
nearest-neighbor selection method from Schulman et al. [21]
can be stated that states which have a low registration cost
to the demonstration scene are likely to be in the transfer set
for that demonstration. This assumes that the state space is
locally smooth with respect to registration cost. In practice,
this assumption has been borne out in the success of this
approach.

By attempting to transfer trajectories in simulation, we
can get additional feedback and examples of states that are
in the transfer set for our demonstrations. Continuing with
this line of reasoning, a natural next step is to hope that
that states that are close (with respect to registration cost)
to states in the transfer set are likely to be that transfer set.
This suggest a simple way to improve performance through
experimentation: given a set of states that a trajectory, t, has
been successfully transferred to, ST , we select a trajectory
to transfer according to the following rule:

argmin
t

min
s∈St

registration cost(s). (2)

We can take this idea a step further. When we succeed
in completing a task in a new scenario, we get a new set of
states and trajectories that perform our desired manipulation.
These are new examples of successful manipulations in their
own right. Instead of simply storing the states we success-
fully transfer to, we can add those examples to our trajectory
library and consider transferring the derived trajectories to
new scenes. Alg. 1 shows an exploration strategy to apply
bootstrapping to a trajectory library. The process repeatedly
selects the nearest-neighbour with respect to registration cost,
and adds it to the trajectory library if successful.

One possible objection to this method is as follows: given
that these derived examples are simply deformations of an
original, why would we expect this to be better than simply

input : trajLib = [(s1, t1), (s2, t2), . . .]
output: bootstrapLib, bootstrapped trajectory library
bootstrapLib ← trajLib;
for i← 0 to N do

stest ← sampleNewInitialState();
(sp, tp) ← argmin

(s,t)

registration cost(s, stest);

twarped ← fit TPS(sp, stest, tparent);
if successful trajectory execution then

bootstrapLib ← (sp, twarped) ∪ bootstrapLib ;
end

end
Algorithm 1: Bootstrapping a Trajectory Library

transferring the original? The answer to this question is based
in different aspects of the TPS approach to trajectory transfer.

The first is that, in addition to finding a transfer func-
tion that minimizes curvature, we are also finding corre-
spondences between points in the different scenes. Finding
correspondences is a difficult and well-studied problem in
computer vision and the best approaches are subject to local
optima. The TPS-RPM algorithm is no exception.

We could appeal to local features to improve this difficulty,
but finding feature descriptors that capture important aspects
of general manipulation problems is a difficult task. The
states we add to our trajectory library are examples of
states and correspondences that successfully transferred a
demonstration trajectory. By transferring directly from those
states, as opposed to the original demonstration state, we are
providing a better initialization to the TPS-RPM algorithm
and we should be able to find better correspondences between
points.

The second reason we would expect this to be successful
is that in transferring derived states and trajectories, we
enable the use of a broader class of functions for transferring
trajectories. In transferring a trajectory, t, from state s1
through state s2 to s3, we compute a thin plate spline from
s1 to s2 (f1→2) then from s2 to s3 (f2→3). The trajectory we
execute is then f1→2(f2→3(t)) 6= f1→3(t). Instead of using
a thin plate spline, we are using a form of iterated thin plate
spline.

The intuition behind this is that a thin plate spline rep-
resents an encoding of a preference for non-rigid functions
to transfer a state. For a general approach, this is a good
preference to have. However, for a particular manipulation
task, not all deformations will have the same effect on
transfer success.

As an example, consider a robot transferring trajectories
for opening a drawer. In transferring the first portion of a
demonstration, almost any deformation is OK: all that needs
to happen is that the robot grabs the drawer handle. However,
for the second part—actually opening the drawer—almost
any non-rigid deformation will result in a failed transfer.

In fitting a thin plate spline to derived trajectories, we
gain the ability to learn these transfer properties for the
manipulation we are exploring. The non-rigid deformations



Fig. 2. Example of the steps involved in an overhand knot-tying task in
our simulated environment. The standard demonstrations in our trajectory
tie a knot as a sequence of 3 steps.

that resulted in successful transfers are no longer penalized
in fitting the thin plate spline. For our drawer example, after
enough examples of successful transfers this technique would
effectively learn to allow certain types of deformations (e.g.
those that allow us to grab the drawer) but still maintain the
ability to penalize for others (e.g. deformations that do not
allow the robot to open the drawer).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluate our learning method in a simulation envi-
ronment on an overhand knot-tying task. We use floating
grippers to study the effects of trajectory transfer without the
complications of altering derived trajectories to incorporate
joint constraints.

1) Demonstrations: The demonstrations we use to ini-
tialize the trajectory library are those used by Schulman et
al. [21] for their experiments. The demonstrations split the
task of tying an overhand knot into 3 steps. Demonstrations
were collected by physically guiding a Willow Garage PR2
through these steps and opening or closing the grippers at
the appropriate points. There are 36 demonstrations of full
knot ties in the data set in addition to several demonstrations
that correct for common failures. Point clouds were collected
with an Asus Xtion Pro RGBD camera and filtered by color
to extract rope points.

2) Simulation Environment and Task Distribution: The
tasks we consider are simulations of an overhand knot tying
tasks. We simulate a rope as a chain of cylinders linked by
bending and torsional constraints. Simulation is done through
the use of Bullet Physics engine [6].

Our distribution over initial states is defined procedurally.
We begin by uniformly selecting an initial state from the
demonstration. Then 7 points along the rope are drawn and
subjected to 10cm of perturbation in a random direction.
Finally a random rotation between 0 and π

4 is applied to
the perturbed rope. We ran our bootstrapping algorithms on
initial states from this distribution and tested on a separate
evaluation set.

3) Training and Evaluation: We generated 10 sets of 170
states each drawn IID from our initial state distribution. We
trained a trajectory library for each of these 10 sets of initial
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Fig. 3. Success rate of tying a an overhand knot in simulation with
bootstrapped examples compared with the baseline approach from Schulman
et al. [21]. The problems for this scenario were generated by selecting a
random initial state from a demonstration library and perturbed randomly
by dragging random points on the rope. Directly transferring from the
demonstrations achieves a success rate of 59%. After doing 170 round of
bootstrapping, we are able to improve on to an average of 74% success.
Our top performing trained set achieved 84% success, an improvement of
25% over the baseline. This success can be attributed to several factors,
key among them are better modelling of states a trajectory can transfer to
and ability to penalize less for deformations that have allowed successful
transfer in the past.

states. Training was accomplished by an initial exploration
phase of 50 attempts where only the initial (expert/ human)
demonstrations were used. Then there were 120 knot-tying
attempts that chose and transferred trajectories using the new
techniques. We evaluated our bootstrapped libraries on an
evaluation set that consisted of 300 initial states that were
held out from training.

B. Results & Analysis

On our test set, across 10 different training sequences,
our bootstrapped trajectories yielded an average success rate
of 74%. This represents a 15% increase over the baseline
approach which only used the initial human demonstrated
trajectories. Our best performing run gained an additional
10% to reach an 84% success rate overall. Fig. 3 illustrates
these results.

We believe that these results indicate the utility of this
approach to improving trajectory transfer with non-rigid
registration. By successively warping from states that we
have transferred trajectories successfully, we enable transfer
that penalizes less for deformations that preserve important
aspects of the manipulation task without hand-coding prior
knowledge. For example, in our knot-tying task, trajectory
will transfer robustly for deformations in the X-Y plane,
but deformations in the Z dimension will often cause un-
successful transfers. Fig. 4 illustrates this for one example
from our evaluation set. Directly warping with TPS-RPM
fails because correspondences are hard to find. Even with
correct correspondences, standard trajectory transfer is prone



(a) A demonstration state (b) The result from TPS-RPM

(c) TPS with Known Correspondences (d) TPS from a Bootstrapped State

Fig. 4. Illustrations of various methods of Thin Plate Spline mappings. (a) shows the state from the demonstration being warped. (b) shows the results of
directly warping from this state with TPS-RPM. The differences between the demonstration state and current state cause errors errors in the correspondences.
(c) shows the results of directly fitting a thin plate spline with known correspondences. The intersection of the bold line and the rope (which are seperate
in the initial scene) illustrates a large amount of non-rigidity in the Z-dimension to reduce the warping the X-Y plane. This can cause trajectory transfer
to fail for this task. (d) shows the results of warping from a nearby bootstrapped state. The overall structure of the demonstration scene is better mapped
into this scene because the iterated thin plate spline does not penalize for deformations that led to successful trajectory transfers during training.

to failure because the thin plate spline fit will penalize
equally for all deformations. By contrast, bootstrapping from
successful trajectories discovers this structure and is able to
leverage it to succeed.

We believe that these results indicate the utility of this ap-
proach. We have demonstrated that given access to feedback
about successful transfers can have large payoffs. However,
the particular algorithm we use to actually perform this
bootstrapping exhibits large variance. We believe that this
can be combated through more explicit and careful trade
off between exploration and exploitation. After the initial
exploration phase, the focus on exploitation can miss the
potential to better transfer new trajectories. A more sophis-
ticated treatment of the exploration exploitation trade off in
this setting is an important direction for future work.
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